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Abstract—Data deduEIication (for short, dedupe) is a special
data compression technique and has been widely adopted
especially in backup storage systems with the primary aims
of backup time saving as well as storage saving. Thus, most of
the traditional dedupe research has focused more on the write
performance improvement during the dedupe process while
very little effort has been made at read performance. However,
the read performance in dedupe backup storage is also a crucial
issue when it comes to the storage recovery from a system
crash. In this paper, we newly design a read cache in dedupe
storage for a backup application to improve read performance
by taking advantage of its special characteristic: the read
sequence is the same as the write sequence. Thus, for better
cache utilization, we can evict the data containers with smallest
future references from the cache by looking ahead their future
references in a moving window. Moreover, To achieve better
read cache performance, our design maintains a small log
buffer to judiciously maintain future access data chunks. Our
experiments with real world workloads demonstrates that our
proposed read cache scheme makes a big contribution to read
performance improvement.
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I. INTRODUCTION AND MOTIVATIONS

to be read. Then, it looks up the container (generally, 2
or 4MB) in the read cache. Once hitting the cache, it
reads the chunks from the cache. Otherwise, it fetches one
whole container from the underlying storage and then it
can read the corresponding data chunks in the container.
However, these read processes result in low cache utdizati
because even though there exist spatial locality in the data
container, only partial data chunks in the containers are
mostly accessed [1]. Furthermore, the higher dedupe rates,
the higher data fragmentation rates. This can lower spatial
locality so that it worsens cache utilization. Our key idiea,
this paper, lies in exploiting future access patterns o dat
chunks. In general, read sequences are identical to write
sequences in the dedupe storage for backup. Inspired by
this special characteristic inherent in such an applicatio
our read cache design can take advantage of future read
access patterns during dedupe processes, but general cache
algorithms such as LRU do not consider this special feature
in dedupe mechanisms.

Based on these observations, we propose a lookahead read
cache design in dedupe storage for a backup application. In
this paper, we make the following main contributions:

Digital data explosion empowers data deduplication (fore Exploiting Future Accesses: We maintain access infor-
short, dedupe) to have been in the spotlight and ovemation for future read references during dedupe (i.e.eprit
80% of companies are drawing their attention to deduperocesses. Thus, our proposed design evicts a victim with a
technologies [1]. Data dedupe is a specialized technique temallest future reference count from the read cache.
eliminate duplicated data so that it retains only one unique Design Extension with a Log Buffer: We assign a portion
data on storage and replaces redundant data with a pointer ¢ a read cache space into a log buffer which can effectively
the unique data afterwards. These days, dedupe techn®logimaintain future access chunks on the basis of our hot data
have been widely deployed particularly in secondary s@ragidentification scheme.
systems for data backup or archive due to considerable cost Extensive Dataset Analysis. Our proposed design is
(i.e., ime as well as space) saving. Thus, major concernfundamentally inspired by our diverse real dataset analyse
have been mostly related to write performance improvement Since our proposed design is a read cache scheme, unlike
thereby efficiently detecting and removing as many dupli-a selective duplication/deduplication approach thatwalo
cates as possible with the help of efficient data chunkingpartial data duplication to improve read performance while

index optimization/caching, compression, and data coatai
design [2], [3], [4], [5], [6]- On the other hand, its read

hurting its write performance, our design not only does not
hurt write performance at all, but also can be applied to

performance has not attracted considerable attention-to reither dedupe systems.
searchers because read operations are rarely invokedhn suc The remainder of this paper is organized as follows.

dedupe storge systems. However, when it comes to syste®ection Il explains the design and operations of our prapose

recovery from a crash, it has a significantly different story cache scheme. Section III provides a variety of our exper-
Long term digital preservation (LTDP) communities were re-imental results and analyses. Section IV discusses related
cently very emphatic on the importance of read performancyork addressing especially a dedupe read performance issue

in dedupe storage [7], [8]. Moreover, some primary storagerinally, Section V discusses our future work.
systems have started to equip the dedupe technologies [9].

Although this read performance as well as write performance Il. LOOKAHEAD READ CACHE DESIGN

is also a crucial factor in dedupe storage, very little effor ional .

has been made at this issue. Typical data chunk (generallﬁ' Rationale and Assumptions

a few KB) read processes in secondary dedupe storage areln general, as more duplicates are eliminated from in-
as follows: first, the dedupe storage system identifies theoming data stream, the read performance stands in marked
data container ID retaining the corresponding data chunksontrast to its good write performance due to the higher
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Figure 3: Overall architecture of our base read cache scheme

likelihood of the shared data fragmentation [1]. This is thewe assume each data chunk with same color belongs to the
fundamental challenging issue of the tradeoff between reagame data container.

performance and write performance in dedupe storage. To

address this read performance issue, we propose a novel read

cache design leveraging future access information. Ingiedu | . .

storage for backup or archive, the read access sequencelif§lexed by the chunk sequence ID in the X-axis and the

highly likely to be identical to its write sequence. Basedcontainer ID starts from zero. For example, if a dataset

on this key oservation, our proposed scheme records writficludes many unique chunks, the accessed container ID

access metadata information for the future read accessgduri Increases linearly like the first version (ver-1) of the data

each dedupe process, which enables our lookahead cachedgrl there are no fluctuations within the ver-1 section in

exploit future read references. We assume that each dafdgure 2(a), whereas if a dataset contains many duplicates,

chunk size is variable and a data container retaining manghe chart fluctuates due to fragmented accesses of previous

(generally, 200-300) data chunks is a basic unit for reads. containers. Four datasetdst1 throughds-4 show similar
data access patterns: most of the data chunks are unique in

B. Dataset Analysis the initial backup version (ver-1) and the duplicate chunks

We made an extensive analysis of six real backup datasedcrease for each successive backup dataset (Figure 2(a)).
and also observed that a considerable portion of data idact: this is a typical characteristic of most backup datase
in general, duplicated for each version of backup datase h‘e t% spgtcehllmlt,hwe Sho"(‘; only gge flgudr% (ds—l))h_(g_n the
(Table 1). This implies the dedupe read cache can be poorl j[ﬁer and, the other two N ataseds-5 an 5'9 exhipit
utilized in general cache design because only a small numbé}ifférent access patterns: there are many duplicates even i
of data chunks in a data container are accessed. Figure W€ initial version of backup datasets. Thus, we can see many
exhibits the distributions of the number of accessed daté(ert'call(IIneS even in version 1 as well as successive vessio
container with respect to the percentage of accessed chunkE Packup datasets (Figure 2(b)).
in the shared container for each real backup dataset. That i Archi 1O .
we observed how many data chunks in shared containers are Architectural Overview
accessed when duplicate data chunks are requested to readFigure 3 shows an overview of our proposed base read
When we reach a percentage of five (note: logarithmic scaleache design for dedupe storage. The proposed scheme
for X-axis), it can accommodate most of the number of dataconsists of three key components: a future sliding window,
container. This implies most of the data containers are onlyot data identification scheme, and the read cache. The
accessed of less than 5% of data chunks in each containeliding window can be thought of as a lookahead window
Therefore, we adopt 5% as our initial hot threshold value. to see future chunk read accesses. The data chunk in its tail
Figure 2(a) and (b) show container access patterns gfosition is always considered a current data chunk to read
the dedupe backup datasets. The X-axis represents a chuakd after reading the current chunk, the window takes a slide
sequence ID of successive versions of each backup datasatward the future by one for each time. Based on this sliding
The Y-axis represents accessed container IDs storing shunkvindow scheme, the hot or cold decision is made. Our hot
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Figure 4: Architecture of our hot data identification scheme
E. Base Design

Our proposed read cache is mainly designed for the
data identification scheme maintains data container nefere secondary dedupe storage for the backup or archive and
counters. When any data chunk comes into the head positiaonakes an attempt to exploit its aforementioned special
in the window, its reference counter of the correspondingcharacteristic. In addition, its basic cache policy is nugath
data container is incremented by 1 (note: a data container isy our hot data identification scheme. We initially assign a
a basic unit of the chunk read). On the contrary, if any datasmall (SMB=2MB containex4) read cache since we may
chunk is evicted from the tail position in the window, the consider multiple streams/processes environments. @vera
reference counter is decreased by 1. If the total containeworking process is described as follows: whenever any data
reference count of a current data chunk is over than &hunk is accessed for read, its container ID is first idewtifie
predefined threshold value (aforementioned 5%) within theand then the container is ready to be stored in the cache.
window, the corresponding container is classified into a hotf the read cache is full of data containers, we need to
container, otherwise, a cold container. This hot thresholdhoose a victim. Our scheme selects a container with a
value was empirically derived in our workload analysis. smallest future reference count as a victim. However, dl da
More detailed architecture of this hot data identificationcontainers in the cache may turn to a different classificatio
scheme is described in the following subsection II-D. bastl over time because the window continues to move forward.
our read cache stores the accessed containers and doEsus, we need to update their reference counts accordingly,
not adopt the existing cache algorithms such as LRU omwhich will cause ignorable overheads because there are
ARC. Instead, our read cache selects the least effecteg (i. only a few numbers (basically, 4) of containers in the
smallest reference count) container as a victim. We willcache. Even though this algorithm is simple, it considgrabl
extend this read cache design by fitting a small log buffeimproves dedupe read performance and outperforms the

into this base design to improve performance further. widely adopted cache algorithm, LRU. Unlike our extended
L design, our base design utilizes our hot data identification
D. Hot Data Identification Scheme scheme mainly for its efficient reference count management,

Hot data identification plays an important role in our not for hot data identification.
cache design. Since it is invoked at each time a data chun . .
is accessed, it must achieve low computational overheads DP€sIgn Extension
and small memory consumption [10]. To meet these require- This extended read cache design is inspired by our ob-
ments, we adopt counting bloom filter and multiple hashservations on dataset analysis. As shown in Figure 5, we
functions as displayed in Figure 4. That is, the aforemenassign a part of a read cache space into a log buffer to
tioned container reference counters are implemented by thexploit future access information. That is, the key ideahis t
counting bloom filter. This hot data identification schemeextended design is to maintain a small buffer to log future
works as follows: whenever a data chunk comes in the slidaccess chunks before a container is evicted from the read
ing window to the head position, the chunk ID is convertedcache in accordance with the hot data identification. This
into its container ID and then the container ID is fed to hashog buffer is managed by a circular queue. Before eviction,
functions (we adopt multiple hash functions to reduce afals our extended design attempts to classify the victim coetain
identification rate). Each hash value corresponds to thieir binto hot or cold by using our hot data identification scheme.
positions in the bloom filter. Finally, each reference ceunt If the victim container is identified as cold (that is, a small
is increased by 1 respectively. Similarly, outgoing datanth  number of chunks in the container will be accessed in the
from the window decreases each counter by 1 accordinglynear future), its remaining future access chunks within the
Based on these basic operations, for identification of avindow is stored into the log buffer. We do not store already
current access chunk, its container ID is fed to hash funstio accessed data chunks. Since we employ 5% as our hot
and our scheme, then, checks its corresponding referengkreshold value, the maximum amount of data chunks to be
counters in each bit position of the bloom filter. Due to thelogged is at most 5% of the total data chunks (typically 10-
likelihood of a hash collision, the scheme always choose20 chunks) in the victim container. However, in most cases,
a smallest reference count. If it is greater than a predefinethe amount of logging chunks will be less than the threshold
threshold, the data container is classified as hot, otherwis because the window moves forward over time and only the
cold. remaining future access chunks in the window are stored to
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A. Experimental Setup Figure 6: LRU vs. Our Base Design

We implement our dedupe storage simulator on the basis
of the DiskSim simulator [11]. The underlying storage ; 3
includes 9 individual disks (IBM DNES-309170W), each £ 3
of which provides storage capacity of 17,916,240 blocksm 32
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typical dedupe or our scheme because it is much smaller (a) ds-1 (b) ds-5

than storage I/O time. For the dedupe, we use a fixed sized-. . . . .
container of 2MB for both and each container read (write)q:'gure 7: Base vs. Extension with Diverse Hot Threshold
accesses 64 stripe units, where each individual disk serves
about 7-8 stripe unit reads (writes). z ®
We employ six backup datasets (Table 1) traced in rea 22
data backup environments. Each dataset consists of 2 or 5 »,
successive versions of (full) backup data streams. d$e 30
1, ds-2 andds-3datasets were obtained from all Exchange< 2s
Server data. Thels-4 contains system data for a revision = 26
control system. Thels-5includes data from the /var direc- 5 21055 o
tory in the same machine. This-6contains data from home 2z, 2 3 4 5
directories with several users. For our experimental pggpo Version Number Version Number
all the datasets except the last orms-@ were truncated (a) ds-1 (b) ds-5
to be 20GB in size and to have about 1,900K chunks in ; . ;
total. Each dataset contains chunked data streams by using Figure 8: Impact of a Log Buffer Size.
variable-length chunking with an average chunk size of 8KB.
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B. Experimental Results chunks in a container into the log buffer. The hot threshold
Figure 6 shows the read performance for LRU and ouof 5% means that if the percentage of total data chunk
base design with various cache sizes. Note the the caclaecess in a data continer is over than 5%, the container is
size of 2, 4, and 8 means the number of a data containedentified as hot, otherwise, cold. Only if it is identified as
(2MB). Thus, the cache size of two corresponds to 4MBcold, the remaining future access chunks will be logged in
cache. Moreover, due to the space limitation, we preserthe small buffer. Thus, intiutively, the higher a hot threlsh
only two datasetsds-1 and ds-5 because, based on our the better read performance because the more number of
extensive dataset analysis, four datasets1 ds-2 ds-3 future access chunks will be able to be stored in the buffer.
andds-4 exhibit very similar data patterns and show almostHowever, our design with the higer threshold than 3 or 5
identical result patterns. Similarly, the other two datag#gs-  does not lead to higher performance gain. In addition, we
5 andds-6 also exhibit similar patterns. Therefore, we just observe that our extended design (with a log buffer) does
choose one of each on behalf of the other(s) afterwardsiot considerably achieve performance improvementsn
As plotted in the Figure 6, our base design shows bettet, ds-2 ds-3 and ds-4 (2.3% improvement on average).
read performance than LRU for all cache sizes only withHowever, in bothds-5andds-§ it signifiantly improves the
the change of a cache replacement algorithm because otgad performance by an average of 63.1%. These results
algorithm exploits future access information. Our progbse stem from the workload characteristics of the datasets and
base scheme improves the dedupe read performance by am have already addressed this in |I-B. Moreover, Figure 8
average of 14.5% and 16.8% respectively. supports the experimental results in Figure 7 and shows very
Figure 7, 8, 9, and 10 depict the performance improvesimilar performance patterns because all performancesgain
ment with our extended cache design with various configuraef our extended design are fundamentally originated from
tions. First of all, in Figure 7, we explore both the impact of the log buffer. We also observed that our extended design
a hot threshold value and performance improvement of ouputperforms LRU by an average of 64.3%ds-5and ds-6
extended design. Hot data identification plays an important Our sliding window size is another factor to be discussed
role in making decision about logging future access dataince it implies how much we can look ahead in the near



locality by selectively deduplicating primary data and tem
poral locality by maintaining dedupe metadata completely
in memory, not on disk. However, it did not address the file
system'’s read cache design.

V. FUTURE WORK

This work has assumed that the basic read unit in sec-
ondary dedupe storage is a data container retaining hundred
of small data chunks. As our future work, we will remove
such assumption so that each data chunk can be directly
read from the underlying dedupe storage. In addition, we are
considering a variable container size and an adaptive sehem
to workloads by dynamically changing the hot threshold.

Read Performance (MB/s)
Read Performance (MB/s)

Version Number

(b) ds-5

Version Number

(a) ds-1
Figure 9: Impact of a Window Size.
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