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Abstract—Data deduplication (for short, dedupe) is a special
data compression technique and has been widely adopted
especially in backup storage systems with the primary aims
of backup time saving as well as storage saving. Thus, most of
the traditional dedupe research has focused more on the write
performance improvement during the dedupe process while
very little effort has been made at read performance. However,
the read performance in dedupe backup storage is also a crucial
issue when it comes to the storage recovery from a system
crash. In this paper, we newly design a read cache in dedupe
storage for a backup application to improve read performance
by taking advantage of its special characteristic: the read
sequence is the same as the write sequence. Thus, for better
cache utilization, we can evict the data containers with smallest
future references from the cache by looking ahead their future
references in a moving window. Moreover, To achieve better
read cache performance, our design maintains a small log
buffer to judiciously maintain future access data chunks. Our
experiments with real world workloads demonstrates that our
proposed read cache scheme makes a big contribution to read
performance improvement.
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I. I NTRODUCTION AND MOTIVATIONS

Digital data explosion empowers data deduplication (for
short, dedupe) to have been in the spotlight and over
80% of companies are drawing their attention to dedupe
technologies [1]. Data dedupe is a specialized technique to
eliminate duplicated data so that it retains only one unique
data on storage and replaces redundant data with a pointer to
the unique data afterwards. These days, dedupe technologies
have been widely deployed particularly in secondary storage
systems for data backup or archive due to considerable cost
(i.e., time as well as space) saving. Thus, major concerns
have been mostly related to write performance improvement
thereby efficiently detecting and removing as many dupli-
cates as possible with the help of efficient data chunking,
index optimization/caching, compression, and data container
design [2], [3], [4], [5], [6]. On the other hand, its read
performance has not attracted considerable attention to re-
searchers because read operations are rarely invoked in such
dedupe storge systems. However, when it comes to system
recovery from a crash, it has a significantly different story.
Long term digital preservation (LTDP) communities were re-
cently very emphatic on the importance of read performance
in dedupe storage [7], [8]. Moreover, some primary storage
systems have started to equip the dedupe technologies [9].
Although this read performance as well as write performance
is also a crucial factor in dedupe storage, very little effort
has been made at this issue. Typical data chunk (generally,
a few KB) read processes in secondary dedupe storage are
as follows: first, the dedupe storage system identifies the
data container ID retaining the corresponding data chunks

to be read. Then, it looks up the container (generally, 2
or 4MB) in the read cache. Once hitting the cache, it
reads the chunks from the cache. Otherwise, it fetches one
whole container from the underlying storage and then it
can read the corresponding data chunks in the container.
However, these read processes result in low cache utilization
because even though there exist spatial locality in the data
container, only partial data chunks in the containers are
mostly accessed [1]. Furthermore, the higher dedupe rates,
the higher data fragmentation rates. This can lower spatial
locality so that it worsens cache utilization. Our key idea,in
this paper, lies in exploiting future access patterns of data
chunks. In general, read sequences are identical to write
sequences in the dedupe storage for backup. Inspired by
this special characteristic inherent in such an application,
our read cache design can take advantage of future read
access patterns during dedupe processes, but general cache
algorithms such as LRU do not consider this special feature
in dedupe mechanisms.

Based on these observations, we propose a lookahead read
cache design in dedupe storage for a backup application. In
this paper, we make the following main contributions:
• Exploiting Future Accesses: We maintain access infor-
mation for future read references during dedupe (i.e., write)
processes. Thus, our proposed design evicts a victim with a
smallest future reference count from the read cache.
• Design Extension with a Log Buffer: We assign a portion
of a read cache space into a log buffer which can effectively
maintain future access chunks on the basis of our hot data
identification scheme.
• Extensive Dataset Analysis: Our proposed design is
fundamentally inspired by our diverse real dataset analyses.

Since our proposed design is a read cache scheme, unlike
a selective duplication/deduplication approach that allows
partial data duplication to improve read performance while
hurting its write performance, our design not only does not
hurt write performance at all, but also can be applied to
other dedupe systems.

The remainder of this paper is organized as follows.
Section II explains the design and operations of our proposed
cache scheme. Section III provides a variety of our exper-
imental results and analyses. Section IV discusses related
work addressing especially a dedupe read performance issue.
Finally, Section V discusses our future work.

II. L OOKAHEAD READ CACHE DESIGN

A. Rationale and Assumptions

In general, as more duplicates are eliminated from in-
coming data stream, the read performance stands in marked
contrast to its good write performance due to the higher



Table I: Various dedupe gain ratio (DGR) in successive
versions of each backup dataset (Unit:%). DGR represents
the ratio of a data saving size to an original data size.

ver-1 ver-2 ver-3 ver-4 ver-5 avg. DGR
ds-1 99.9 3.5 6.9 5.6 31.2 29
ds-2 100 28 24.7 14.9 20.6 37
ds-3 99.6 95.2 97.7 97.3 96.6 97
ds-4 90.5 55.4 63.6 20.8 20.6 50
ds-5 84.1 3.3 2.5 11.9 2.6 20
ds-6 54.4 22.4 – – – 38
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Figure 1: Distributions of the number of accessed container
for six real backup datasets. X-axis represents the percentage
of accessed chunks in a container.

likelihood of the shared data fragmentation [1]. This is the
fundamental challenging issue of the tradeoff between read
performance and write performance in dedupe storage. To
address this read performance issue, we propose a novel read
cache design leveraging future access information. In dedupe
storage for backup or archive, the read access sequence is
highly likely to be identical to its write sequence. Based
on this key oservation, our proposed scheme records write
access metadata information for the future read access during
each dedupe process, which enables our lookahead cache to
exploit future read references. We assume that each data
chunk size is variable and a data container retaining many
(generally, 200-300) data chunks is a basic unit for reads.

B. Dataset Analysis

We made an extensive analysis of six real backup datasets
and also observed that a considerable portion of data is,
in general, duplicated for each version of backup datasets
(Table I). This implies the dedupe read cache can be poorly
utilized in general cache design because only a small number
of data chunks in a data container are accessed. Figure 1
exhibits the distributions of the number of accessed data
container with respect to the percentage of accessed chunks
in the shared container for each real backup dataset. That is,
we observed how many data chunks in shared containers are
accessed when duplicate data chunks are requested to read.
When we reach a percentage of five (note: logarithmic scale
for X-axis), it can accommodate most of the number of data
container. This implies most of the data containers are only
accessed of less than 5% of data chunks in each container.
Therefore, we adopt 5% as our initial hot threshold value.

Figure 2(a) and (b) show container access patterns of
the dedupe backup datasets. The X-axis represents a chunk
sequence ID of successive versions of each backup dataset.
The Y-axis represents accessed container IDs storing chunks
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Figure 2: Container access patterns of a typical dedupe.
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Figure 3: Overall architecture of our base read cache scheme.
We assume each data chunk with same color belongs to the
same data container.

indexed by the chunk sequence ID in the X-axis and the
container ID starts from zero. For example, if a dataset
includes many unique chunks, the accessed container ID
increases linearly like the first version (ver-1) of the dataset
ds-1: there are no fluctuations within the ver-1 section in
Figure 2(a), whereas if a dataset contains many duplicates,
the chart fluctuates due to fragmented accesses of previous
containers. Four datasets (ds-1 throughds-4) show similar
data access patterns: most of the data chunks are unique in
the initial backup version (ver-1) and the duplicate chunks
increase for each successive backup dataset (Figure 2(a)).In
fact, this is a typical characteristic of most backup datasets
(due to space limit, we show only one figure (ds-1)). On the
other hand, the other two datasets (ds-5 and ds-6) exhibit
different access patterns: there are many duplicates even in
the initial version of backup datasets. Thus, we can see many
vertical lines even in version 1 as well as successive versions
of backup datasets (Figure 2(b)).

C. Architectural Overview

Figure 3 shows an overview of our proposed base read
cache design for dedupe storage. The proposed scheme
consists of three key components: a future sliding window,
hot data identification scheme, and the read cache. The
sliding window can be thought of as a lookahead window
to see future chunk read accesses. The data chunk in its tail
position is always considered a current data chunk to read
and after reading the current chunk, the window takes a slide
toward the future by one for each time. Based on this sliding
window scheme, the hot or cold decision is made. Our hot
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Figure 4: Architecture of our hot data identification scheme.

data identification scheme maintains data container reference
counters. When any data chunk comes into the head position
in the window, its reference counter of the corresponding
data container is incremented by 1 (note: a data container is
a basic unit of the chunk read). On the contrary, if any data
chunk is evicted from the tail position in the window, the
reference counter is decreased by 1. If the total container
reference count of a current data chunk is over than a
predefined threshold value (aforementioned 5%) within the
window, the corresponding container is classified into a hot
container, otherwise, a cold container. This hot threshold
value was empirically derived in our workload analysis.
More detailed architecture of this hot data identification
scheme is described in the following subsection II-D. Lastly,
our read cache stores the accessed containers and does
not adopt the existing cache algorithms such as LRU or
ARC. Instead, our read cache selects the least effective (i.e.,
smallest reference count) container as a victim. We will
extend this read cache design by fitting a small log buffer
into this base design to improve performance further.

D. Hot Data Identification Scheme

Hot data identification plays an important role in our
cache design. Since it is invoked at each time a data chunk
is accessed, it must achieve low computational overheads
and small memory consumption [10]. To meet these require-
ments, we adopt counting bloom filter and multiple hash
functions as displayed in Figure 4. That is, the aforemen-
tioned container reference counters are implemented by the
counting bloom filter. This hot data identification scheme
works as follows: whenever a data chunk comes in the slid-
ing window to the head position, the chunk ID is converted
into its container ID and then the container ID is fed to hash
functions (we adopt multiple hash functions to reduce a false
identification rate). Each hash value corresponds to their bit
positions in the bloom filter. Finally, each reference counter
is increased by 1 respectively. Similarly, outgoing data chunk
from the window decreases each counter by 1 accordingly.
Based on these basic operations, for identification of a
current access chunk, its container ID is fed to hash functions
and our scheme, then, checks its corresponding reference
counters in each bit position of the bloom filter. Due to the
likelihood of a hash collision, the scheme always chooses
a smallest reference count. If it is greater than a predefined
threshold, the data container is classified as hot, otherwise,
cold.
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Figure 5: Architecture of our extended read cache design.

E. Base Design

Our proposed read cache is mainly designed for the
secondary dedupe storage for the backup or archive and
makes an attempt to exploit its aforementioned special
characteristic. In addition, its basic cache policy is managed
by our hot data identification scheme. We initially assign a
small (8MB=2MB container×4) read cache since we may
consider multiple streams/processes environments. Overall
working process is described as follows: whenever any data
chunk is accessed for read, its container ID is first identified
and then the container is ready to be stored in the cache.
If the read cache is full of data containers, we need to
choose a victim. Our scheme selects a container with a
smallest future reference count as a victim. However, all data
containers in the cache may turn to a different classification
over time because the window continues to move forward.
Thus, we need to update their reference counts accordingly,
which will cause ignorable overheads because there are
only a few numbers (basically, 4) of containers in the
cache. Even though this algorithm is simple, it considerably
improves dedupe read performance and outperforms the
widely adopted cache algorithm, LRU. Unlike our extended
design, our base design utilizes our hot data identification
scheme mainly for its efficient reference count management,
not for hot data identification.

F. Design Extension

This extended read cache design is inspired by our ob-
servations on dataset analysis. As shown in Figure 5, we
assign a part of a read cache space into a log buffer to
exploit future access information. That is, the key idea of this
extended design is to maintain a small buffer to log future
access chunks before a container is evicted from the read
cache in accordance with the hot data identification. This
log buffer is managed by a circular queue. Before eviction,
our extended design attempts to classify the victim container
into hot or cold by using our hot data identification scheme.
If the victim container is identified as cold (that is, a small
number of chunks in the container will be accessed in the
near future), its remaining future access chunks within the
window is stored into the log buffer. We do not store already
accessed data chunks. Since we employ 5% as our hot
threshold value, the maximum amount of data chunks to be
logged is at most 5% of the total data chunks (typically 10-
20 chunks) in the victim container. However, in most cases,
the amount of logging chunks will be less than the threshold
because the window moves forward over time and only the
remaining future access chunks in the window are stored to



the log buffer. On the other hand, if a victim is identified as
hot, we just evict the victim container without any logging
because we can still achieve high container utilization with
this hot container in the near future access. The rationale of
this policy is that if we store many remaining future access
chunks (in the hot container) into the log buffer, they also
lead to the unnecessary eviction of many logged chunks in
the buffer.

III. PERFORMANCEEVALUATION

A. Experimental Setup
We implement our dedupe storage simulator on the basis

of the DiskSim simulator [11]. The underlying storage
includes 9 individual disks (IBM DNES-309170W), each
of which provides storage capacity of 17,916,240 blocks
(8.54GB). It is configured as RAID0 to provide better
performance and enough storage space to accommodate all
the chunks in the backup datasets. The stripe unit size is set
to 32KB. We base our chunk indexing (hash index table)
on google-sparsehash [12]. For read and write performance
measurements, we ignore an elapsed time to execute the
typical dedupe or our scheme because it is much smaller
than storage I/O time. For the dedupe, we use a fixed sized
container of 2MB for both and each container read (write)
accesses 64 stripe units, where each individual disk serves
about 7–8 stripe unit reads (writes).

We employ six backup datasets (Table I) traced in real
data backup environments. Each dataset consists of 2 or 5
successive versions of (full) backup data streams. Theds-
1, ds-2, andds-3datasets were obtained from all Exchange
Server data. Theds-4 contains system data for a revision
control system. Theds-5 includes data from the /var direc-
tory in the same machine. Theds-6contains data from home
directories with several users. For our experimental purpose,
all the datasets except the last one (ds-6) were truncated
to be 20GB in size and to have about 1,900K chunks in
total. Each dataset contains chunked data streams by using
variable-length chunking with an average chunk size of 8KB.

B. Experimental Results
Figure 6 shows the read performance for LRU and our

base design with various cache sizes. Note the the cache
size of 2, 4, and 8 means the number of a data container
(2MB). Thus, the cache size of two corresponds to 4MB
cache. Moreover, due to the space limitation, we present
only two datasets (ds-1 and ds-5) because, based on our
extensive dataset analysis, four datasets (ds-1, ds-2, ds-3,
andds-4) exhibit very similar data patterns and show almost
identical result patterns. Similarly, the other two datasets (ds-
5 andds-6) also exhibit similar patterns. Therefore, we just
choose one of each on behalf of the other(s) afterwards.
As plotted in the Figure 6, our base design shows better
read performance than LRU for all cache sizes only with
the change of a cache replacement algorithm because our
algorithm exploits future access information. Our proposed
base scheme improves the dedupe read performance by an
average of 14.5% and 16.8% respectively.

Figure 7, 8, 9, and 10 depict the performance improve-
ment with our extended cache design with various configura-
tions. First of all, in Figure 7, we explore both the impact of
a hot threshold value and performance improvement of our
extended design. Hot data identification plays an important
role in making decision about logging future access data
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Figure 6: LRU vs. Our Base Design
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Figure 7: Base vs. Extension with Diverse Hot Threshold
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Figure 8: Impact of a Log Buffer Size.

chunks in a container into the log buffer. The hot threshold
of 5% means that if the percentage of total data chunk
access in a data continer is over than 5%, the container is
identified as hot, otherwise, cold. Only if it is identified as
cold, the remaining future access chunks will be logged in
the small buffer. Thus, intiutively, the higher a hot threshold,
the better read performance because the more number of
future access chunks will be able to be stored in the buffer.
However, our design with the higer threshold than 3 or 5
does not lead to higher performance gain. In addition, we
observe that our extended design (with a log buffer) does
not considerably achieve performance improvement inds-
1, ds-2, ds-3, and ds-4 (2.3% improvement on average).
However, in bothds-5andds-6, it signifiantly improves the
read performance by an average of 63.1%. These results
stem from the workload characteristics of the datasets and
we have already addressed this in II-B. Moreover, Figure 8
supports the experimental results in Figure 7 and shows very
similar performance patterns because all performance gains
of our extended design are fundamentally originated from
the log buffer. We also observed that our extended design
outperforms LRU by an average of 64.3% inds-5andds-6.

Our sliding window size is another factor to be discussed
since it implies how much we can look ahead in the near
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Figure 9: Impact of a Window Size.
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Figure 10: Impact of Diverse Cache and Log Buffer Sizes.
In here, a total space (cache plus log buffer) is fixed. C and
L stand for a cache size and a log buffer size respectively.

future. Interestingly, its impact is almost ignorable inds-
1 through ds-4 and a bigger window even worsens the
performance inds-5andds-6(Figure 9). This is because the
farther future accesses in a big window can contaminate a
cache space, which can lead to low cache utilization in our
cache policies. Lastly, we explore the impacts of various
cache and log buffer sizes assuming the same total cache
space. We vary both a cache size and a log buffer size. As
shown in Figure 10, we can observe that a read cache size is
a more important factor inds-1throughds-4. Thus, assigning
a more space into a read cache than into the log buffer will
a better cache design in those types of datasets (we choose
ds-3 instead ofds-1 in Figure 10 (a) since it shows clearer
results). On the other hand, a larger log buffer has a more
impact on the read performance in bothds-5andds-6.

IV. RELATED WORK

Zhu et al. in [5] put an empasis on importance of read
performance in dedupe storage, in particular, for data recov-
ery. They also addressed that read performance substantially
decreased during dedupe process. Kolleret al. [13] proposed
a selective duplication scheme (named I/O Deduplication) to
increase the read/write performance by reducing a disk head
movement. They suggested a content-based cache design
for both read and write requests as a part of their dedupe
scheme, but it was implemented in a separate cache area
from a virtual file system cache layer and just adopted the
existing cache replacement algorithms such as LRU or ARC.
Nam et al. in [14] introduced an indicator for the degraded
read performance named chunk fragmentation level (CFL)
and observed a strong correlation between the CFL value
and the read performance under backup datasets. Recently,
Srinivasanet al. [1] proposed primary inline dedupe system
design (named iDedup). iDedup tried to exploit both spatial

locality by selectively deduplicating primary data and tem-
poral locality by maintaining dedupe metadata completely
in memory, not on disk. However, it did not address the file
system’s read cache design.

V. FUTURE WORK

This work has assumed that the basic read unit in sec-
ondary dedupe storage is a data container retaining hundreds
of small data chunks. As our future work, we will remove
such assumption so that each data chunk can be directly
read from the underlying dedupe storage. In addition, we are
considering a variable container size and an adaptive scheme
to workloads by dynamically changing the hot threshold.
Furthermore, we are designing a novel dedupe system which
can provide guaranteed read performance while assuring
enough write performance in dedupe storage. Ultimately,
we plan to combine both designs for our complete dedupe
system to achieve both good read performance and write
performance.

REFERENCES

[1] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti,
“iDedup: Latency-aware, inline data deduplicationfor primary
storage,” inProceedings of the 10th USENIX Conference on
File and Storage Technologies (FAST), February 2012.

[2] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, and
P. Shilane, “Tradeoffs in scalable data routing for dedupli-
cation clusters,” inProceedings of the 9th USENIX File and
Storate Technologies (FAST), 2011.

[3] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Wel-
nicki, “HYDRAstor: A scalable seconary storage,” inPro-
ceedings of the 7th USENIX File and Storate Technologies
(FAST), 2009.

[4] B. Debnath, S. Sengupta, and J. Li, “ChunkStash: Speed-
ing up inline storage deduplication using flash memory,” in
Proceedings of USENIX Annual Technical Conference (ATC),
2010.

[5] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottlenext
in the data domain deduplication file system,” inProceedings
of the 6th USENIX File and Storage Technologies (FAST),
2008.

[6] D. Meyer and W. Bolosky, “A study of practical deduplica-
tion,” in Proceedings of the 9th USENIX File and Storate
Technologies (FAST), 2011.

[7] “LTDP Reference Model,”http://www.ltdprm.org.

[8] “SNIA Digital Preservation and Capacity Optimization,”
http://snia.org/forums/dpco.

[9] D. Kay and M. Maybee, “Aspects of deduplication,”SNIA
Spring 2010 Tutorials, 2010.

[10] D. Park and D. Du, “Hot Data Identification for Flash-
based Storage Systems using Multiple Bloom Filters,” in
Proceedings of the 27th IEEE Symposium on Mass Storage
Systems and Technologies (MSST), May 2011.

[11] “DiskSim v.4.0,” http://www.pdl.cmu.edu/DiskSim/.

[12] “Sparsehash,”http://code.google.com/p/sparsehash/.

[13] R. Koller and R. Raju, “I/O Deduplication: Utilizing content
similarity to improve I/O performance,” inProceedings of the
8th USENIX File and Storage Technologies (FAST), 2010.

[14] Y. Nam, G. Lu, N. Park, W. Xiao, and D. Du, “Chunk Frag-
mentation Level: An effective indicator for read performance
degradation in deduplication storage,” inProceedings of IEEE
International Symposium on Advances on High Performance
Computing and Networking (AHPCN), 2011.


